Optimal testing for additivity in multiple nonparametric regression
نویسندگان
چکیده
We consider the problem of testing for additivity in the standard multiple nonparametric regression model. We derive optimal (in the minimax sense) nonadaptive and adaptive hypothesis testing procedures for additivity against the composite nonparametric alternative that the response function involves interactions of second or higher orders separated away from zero in L2([0, 1]d)-norm and also possesses some smoothness properties. In order to shed some light on the theoretical results obtained, we carry out a wide simulation study to examine the finite sample performance of the proposed hypothesis testing procedures and compare them with a series of other tests for additivity available in the literature.
منابع مشابه
OPTIMAL TESTING FOR ADDITIVITY IN MULTIPLE NONPARAMETRIC REGRESSION Short title: Testing Additivity
We consider the problem of testing for additivity in the standard multiple nonparametric regression model. We derive optimal (in the minimax sense) nonadaptive and adaptive hypothesis testing procedures for additivity against the composite nonparametric alternative that the response function involves interactions of second or higher orders separated away from zero in L2([0, 1]d)-norm and also p...
متن کاملEstimating the error distribution in nonparametric multiple regression with applications to model testing
In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Ga...
متن کاملTesting additivity in nonparametric regression under random censorship
In this paper, we are concerned with nonparametric estimation of the multivariate regression function in the presence of right censored data. More precisely, we propose a statistic that is shown to be asymptotically normally distributed under the additive assumption, and that could be used to test for additivity in the censored regression setting.
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملTesting for additivity and joint effects in multivariate nonparametric regression using Fourier and wavelet methods
We consider the problem of testing for additivity and joint effects in multivariate nonparametric regression when the data are modelled as observations of an unknown response function observed on a d-dimensional (d ≥ 2) lattice and contaminated with additive Gaussian noise. We propose tests for additivity and joint effects, appropriate for both homogeneous and inhomogeneous response functions, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009